FUTURESTAR 1 of 4

Technical Information

General Flowmeter Guidelines

FLOWMETER SELECTION

To select a flowmeter, the following information is required:

- Media (fluid to be monitored)
- Desired minimum and maximum flow range
- Desired set point
- Specific gravity
- Viscosity
- Temperature
- Pressure
- Port sizes
- Configuration

FLOWFINDER FLOW PREDICTION SOFTWARE

Futurestar also offers FlowfinderTM Flow Prediction Software to assist in flowmeter selection. Simply enter your process requirements and the appropriate flowmeter will be selected. Contact Futurestar your local Futurestar representative to receive a copy.

SPECIFIC GRAVITY / DENSITY AND VISCOSITY

Flowmeter operation is dependent on specific gravity /density and viscosity. For factors other than 1.0 contact Futurestar.

SET POINT

For optimum performance, the flowmeter set point should be between Mark 4 and Mark 9 for standard float tapered tube flowmeters and between Mark 1 and Mark 9 on tapered float designs, typically for lower flow applications.

TAKING A FLOW READING

Flow readings are taken from the top of the float.

ESTABLISHING THE SET POINT

The set point should be approached from below by slowly opening the metering valve. If the desired set point is exceeded, the metering valve should be closed slightly to allow the float to drop below the desired set point and the process started again.

FITTING TORQUE

PFA material has low tensile and compaction strength. Only minimal hand tightening is required on PFA fittings.

technical

Futurestar is committed to proving complete and accurate technical support to assist you in using our products in your applications. For more info on any of our products, please contact Futurestar at 952 -942-8388 or your local Futurestar representative.

Conversions and Formulas

FLOW COEFFIENTS

- C_v flow coefficient is the number of gallons of water that can pass through a given orifice area in one minute at a pressure drop of one PSI.
- K_v flow coefficient is the number of liters of water that can pass through a given orifice area in one minute at a pressure drop of one bar.

Formulas

Flow (GPM) = C_v

 $\sqrt{\frac{\text{Pressure Drop (PSI)}}{\text{Specific Gravity}}}$

TEMPERATURE CONVERSIONS

°F =
$$9 \times °C$$
 + 32
5
°C = $5 \times (°F - 32)$
9

BASIC CONVERSIONS

ml/min	1 cc/min				
	0.001 l/min				
	0.000264 GPM				
l/min	1000 ml/min				
	0.264 GPM				
GPM	3.785 l/min				
	3,785 ml/min				
SCFM	SCFH / 60				
SLM	SCFM x 28.317				
SLM	SCFH / 2.119				
kPa	PSI x 6.895				
bar	PSI x 0.07				
K _v	C _v x 14.28				

Chemical Compatibility

	MATERIALS 68°F (20° C)										
CHEMICALS	PFA	FEP	PTFE	CTFE	ECTFE	ETFE	PVDF	HDPE	PP		
INORGANIC ACIDS			TFA								
hydrochloric (conc)	OK	OK	OK	OK	OK	OK	OK	OK	NR		
sulfuric (conc)	OK	OK	OK	OK	OK	OK	OK	NR	NR		
hydrofluoric (40%)	OK	OK	OK	OK	OK	OK	OK	OK	OK		
aqua regia	OK	OK	OK	OK	OK	OK	NR	OK	NR		
chromic (50%)	OK	NA	NA	OK	OK	OK	OK	OK	OK		
nitric (50%)	OK	OK	OK	OK	OK	OK	OK	OK	OK		
fuming nitric	OK	OK	NA	OK	NA	NR	NR	NR	NR		
phosphoric	OK	OK	OK	OK	OK	OK	OK	OK	OK		
INORGANIC BASES											
sodium hydroxide	OK	OK	OK	OK	OK	OK	NR	OK	OK		
potassium hydroxide	OK	OK	OK	OK	OK	OK	NR	OK	OK		
ammonium hydroxide	OK	OK	OK	OK	OK	OK	NR	OK	OK		
hydrogen peroxide	OK	OK	OK	OK	OK	OK	OK	OK	OK		
ORGANIC ACIDS	•										
glacial acetic	OK	OK	OK	NA	OK	NR	NR	OK	OK		
trichloroacetic	OK	OK	OK	OK	OK	OK	OK	NA	OK		
Hydrocarbons											
toluene	OK	OK	OK	OK	OK	OK	OK	NR	OK		
isooctane	OK	OK	NA	OK	OK	OK	OK	NR	NR		
Alcohols											
benzyl	OK	NR	NA	OK	OK	OK	NR	OK	OK		
ethyl	OK	NA	NA	OK	OK	OK	OK	OK	OK		
isopropanol	OK	OK	OK	NA	OK	OK	OK	OK	OK		
methyl	OK	OK	OK	OK	OK	OK	OK	OK	OK		
Amines											
aniline	OK	NR	NA	OK	OK	NR	OK	NR	OK		
ethylenediamine	OK	NA	NA	NA	OK	OK	NR	OK	OK		
Ether											
tetrahydrofuran	OK	OK	OK	OK	OK	NR	NR	NR	NR		
Ketones / Aldehydes											
acetone	OK	OK	NA	OK	OK	NA	NR	NR	OK		
benzaldehyde	OK	OK	NA	OK	OK	OK	OK	OK	NR		
cyclohexanone	OK	NA	NA	OK	OK	OK	OK	NR	NR		
methylethylketone	OK	OK	OK	OK	OK	NR	NR	NA	OK		
Esters											
dimethylphthalate	OK	NA	NA	OK	OK	NA	OK	NA	NA		
Chlorinated Slovents	•										
methylene chloride	OK	OK	OK	OK	OK	OK	NR	NR	NR		
perchloroethylene	OK	OK	OK	OK	NA	OK	OK	NR	OK		
trichloroethylene	OK	OK	OK	OK	OK	NA	OK	NR	OK		
carbon tetrachloride	OK	OK	OK	OK	OK	NR	OK	NR	OK		
Freon®											
freon TF, 113	OK	OK	OK	NA	OK	OK	OK	OK	OK		
freon TMC	OK	NA	NA	NA	NA	OK	NR	NA	OK		
freon TMS	OK	OK	NA	NA	OK	OK	OK	NA	OK		
freon TE	OK	NA	NA	NA	NA	OK	OK	NA	OK		
OK: Compatib	le	NR: Not recommended				NA: No data available					

NOTE: Data is taken from information supplied by material manufacturers. Futurestar is not responsible for the accuracy of this data and disclaims any obligation or liability in connection with its use in buyer's applications. Contact Futurestar if questions concerning applications arise.

Glossary

ANALOG VARIABLE AREA FLOWMETER

These flowmeters incorporate the attributes of variable area flowmeters and flow indicators while providing electronic output signals based on flow. Available with or without a metering valve incorporated. Viscosity and density of fluids to be monitored does impact meter model selection

CONFIGURATION

This term describes the format of variable area or analog variable area flowmeter available. Various options include panel mount, inline and inline panel mount. Selection options also include inclusion or exclusion of a metering valve and definition of the type and size of connection desired.

DENSITY

Concentration of matter measured by the mass per volume. Generally measured in kilogram/liter values. Density is measured in our Flowfinder[™] Software in grams/cc values.

FLOW COEFFICIENT (Cv)

Flow coefficient (Cv) is defined as the number of gallons per minute (GPM) of water at room temperature that will flow through a valve with a pressure drop of 1 PSI across the valve.

FLOW RANGE

The upper and lower limits of a process flow.

PADDLEWHEEL FLOWMETER

This is a turbo type flowmeter with a rotor that turns through the flow path. Most conventional paddlewheel flowmeters incorporate magnets in the wheel and a magnetic proximity sensor counting the rotations. Futurestar paddle wheel flowmeters utilize rotor movement to interrupt a fiber optic light source yielding a pulsed output that corresponds with flow.

SPECIFIC GRAVITY (LIQUID)

The ratio of weight for a liquid divided by the weight of water for an equal volume at an identified temperature.

SET POINT

The desired flow level that is identified as optimum for specific process requirements.

VARIABLE AREA FLOWMETER

A device for visually indicating fluid flow, many times referred to as a rotameters. This type of meter incorporates a float inside of a tapered tube that is vertically mounted. Up or down float movement corresponds to the fluid flow rate in the tapered tube. This type of a meter is available with or without the incorporation of a metering valve. Viscosity and density of fluids to be monitored does impact meter model selection.

VISCOSITY

Describes the relationship between flow rate (shear rate) and the pressure (shear stress) that causes movement. Viscosity is a measure of resistance to flow of a fluid. There are two commonly used measures of viscosity, "absolute" and "kinematic or Absolute viscosity is pressure relative". (shear stress) divided by flow rate (shear Absolute viscosity is commonly rate) measured in poise or centipoise. Kinematic or relative viscosity is the ratio of absolute divided by density. Kinematic or relative viscosity is commonly measured in stokes. Absolute viscosity is measured in our Flowfinder[™] Flow Prediction Software. Viscosity is affected by temperature.

U.S. Patents: 5565631, 5549277, 5381826, 5078004 Others pending

Futurestar®, Pathfinder®, Odyssey®, Sentinel® and AutoValve® are registered trademarks of Futurestar Corp. Super 300 Type Pillar Fitting® is a trademark of NIPPON PILLAR PACKING CO., LTD.